Stabilization of Three-Membered Rings by Protonation. The Cyclic Global Minimum of $\mathrm{HP}_{2} \mathrm{O}^{+}$, the Protonated Phosphorus Analogue of Nitrous Oxide

Randall D. Davy, Yaoming Xie, and Henry F. Schaefer, III*
Contribution from the Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602. Received July 2, 1990

Abstract

Second-row analogues of $\mathrm{N}_{2} \mathrm{O}$ have been the subjects of several recent studies. Reported here are ab initio theoretical geometries and vibrational frequencies for the $\mathrm{N}_{2} \mathrm{O}$ analogue $\mathrm{P}_{2} \mathrm{O}$. These results were obtained at higher levels of theory than previously reported. We also report ab initio theoretical results for the isomers of protonated $\mathrm{P}_{2} \mathrm{O}$. Although the second-row atoms strongly affect the electronic structure and lower the relative energy of the cyclic isomer, the linear isomer remains the global minimum for the $\mathrm{P}_{2} \mathrm{O}$ molecule. However, it is found that protonation of $\mathrm{P}_{2} \mathrm{O}$ reverses the relative energies of the cyclic and linear isomers. Protonated (either phosphorus- or oxygen-protonated) cyclic $\mathrm{P}_{2} \mathrm{O}$ is predicted to be lower in energy than protonated linear $\mathrm{P}_{2} \mathrm{O}$ by about $11 \mathrm{kcal}^{\text {mol }}{ }^{-1}$. This leads us to postulate cyclic structures for isoelectronic species, including $\mathrm{P}_{2} \mathrm{CH}_{2}$ and $\mathrm{P}_{2} \mathrm{NH}$, and to quantitatively predict a cyclic structure for $\mathrm{P}_{2} \mathrm{~F}^{+}$, based on ab initio results.

Introduction

Several important recent papers have reported the isolation of second- (long) row analogues of $\mathrm{N}_{2} \mathrm{O}$, including $\mathrm{PNO},{ }^{1} \mathrm{~N}_{2} \mathrm{~S},{ }^{2,3}$ and $\mathrm{P}_{2} \mathrm{O},{ }^{4,5}$ Andrews and Withnall reported $\mathrm{P}_{2} \mathrm{O}$ as a probable product of the reaction of P_{4} and oxygen atoms and assigned an IR frequency of $1192 \mathrm{~cm}^{-1}$ to the $\mathrm{P}=\mathrm{O}$ stretch in an argon matrix. ${ }^{4}$ Further experimental studies by Mielke, McCluskey, and Andrews ${ }^{5}$ reassigned the $\mathrm{P}=\mathrm{O}$ stretch to $1270 \mathrm{~cm}^{-1}$. The various reaction products proposed by these experimental studies, including $\mathrm{P}_{2} \mathrm{O}$, have been examined theoretically by JarrettSprague, Hillier, and Gould ${ }^{6}$ and Lohr. ${ }^{7}$ The geometries and electronic structures of these $\mathrm{N}_{2} \mathrm{O}$ analogue will be strongly influenced by the poor multiple bonding ability of the second-row atoms. For example, compared to the first-row triatomics, the cyclic structures are much lower in energy. ${ }^{6-8}$ The chemistry of these triatomics should also be quite different from that of $\mathrm{N}_{2} \mathrm{O}$.

We have undertaken a series of studies on $\mathrm{N}_{2} \mathrm{O}$ analogues, ${ }^{9} 10$ and we report here results for both linear and cyclic $\mathrm{P}_{2} \mathrm{O}$ obtained at higher levels of theory than reported previously. More importantly, we investigate the theoretical structures and vibrational frequencies of the protonated isomers of $\mathrm{P}_{2} \mathrm{O}$. We have used the protonation reaction to explore the bonding and reactivity of the second-row analogues of $\mathrm{N}_{2} \mathrm{O}$, and for $\mathrm{P}_{2} \mathrm{O}$ we find a remarkable reversal of the relative energy of the linear and cyclic minima upon protonation. This prompted us to theoretically determine the theoretical structures of the isoelectronic $\mathrm{P}_{2} \mathrm{~F}^{+}$ion, which are reported along with their theoretical vibrational frequencies.

Methods

The standard double-zeta (DZ) and triple-zeta (TZ) basis sets of Dunning and Huzinaga ${ }^{111,12}$ were used. Polarization functions (i.e., d
(1) Ahlrichs, R.; Schunck, S.; Schnöckel, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 421.
(2) Bender H.; Carnovale, F.; Peel, J. B.; Wentrup, C. J. Am. Chem. Soc. 1988, $110,3458$.
(3) Wentrup, C.; Fischer, S.; Maquestiau, A.; Flammang, R. J. Org. Chem. 1986, 51, 1988.
(4) Andrews, L.; Withnall, R. J. Am. Chem. Soc. 1988, 110, 5605.
(5) Mielke, Z.; McCluskey, M.; Andrews, L. Chem. Phys. Lett. 1990, 165, 146.
(6) Jarrett-Sprague, S. A.; Hillier, 1. H.; Gould, 1. R. Chem. Phys. 1990, 140, 27.
(7) Lohr, L. L. J. Phys. Chem. 1990, 94, 1807
8) Korkin, A. A.; Mebel', A. M.; Borisov, E. V. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Trans.) 1988, 37, 780
(9) Davy R. D.; Schaefer, H. F. J. Chem. Phys. 1990, 92, 5417.
(10) Davy R. D.; Schaefer, H. F. J. Am. Chem. Soc. 1991, 113, 1917.
(11) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293.
functions) with exponents of $O, 0.85$, and $P, 0.50$, were added to the $D Z$ basis to give the double-zeta plus polarization (DZP) basis set, and two sets of polarization functions with exponents of $\mathrm{O}, 1.70$ and 0.425 , and P, 1.00 and 0.25 , were added to the TZ basis set to give the TZ2P basis set. All geometries were obtained via analytic first derivative methods. Self-consistent field (SCF) vibrational frequencies were evaluated by analytic second derivative methods; configuration interaction singles and doubles (CISD), coupled cluster singles and doubles (CCSD), and complete active space self-consistent field (CAS-SCF) vibrational frequencies were determined by finite differences of analytic first derivatives. The SCF, CISD, and CCSD methods were those developed in our own group, and coded in the PSI suite of programs. ${ }^{13}$ The CAS-SCF method was that of Werner and Knowles. ${ }^{14}$ The CAS-SCF active space included the 2 s and 2 p orbitals for first-row atoms, and the 3 s and 3 p orbitals for second-row atoms. Thus, the active space for $\mathrm{P}_{2} \mathrm{O}$ included 16 electrons in 12 molecular orbitals.

Results and Discussion

The structures of the linear ${ }^{1} \Sigma^{+}$and the cyclic ${ }^{1} \mathrm{~A}_{1}$ and ${ }^{3} \mathrm{~B}_{2}$ states of $\mathrm{P}_{2} \mathrm{O}$ are given in Figure 1. The theoretical vibrational frequencies and total energies of the same three states are given in Table I. The theoretical structures of the protonated isomers are given in Figure 2, a (singlet states) and b (triplet states). The singlet protonated isomers are either ${ }^{1} \mathrm{~A}^{\prime}\left(C_{s}\right.$ symmetry $)$ or ${ }^{1} \mathrm{~A}\left(\mathrm{C}_{1}\right.$ symmetry) electronic states. The theoretical vibrational frequencies and total energies of the singlet protonated isomers are given in Table II. The relative energies of the nonprotonated and protonated structures at various levels of theory are given in Tables III and IV, respectively.
Molecular orbital diagrams of the valence orbitals for both linear and cyclic $\mathrm{P}_{2} \mathrm{O}$ are given in Figure 3. These diagrams are based qualitatively on the DZP SCF molecular orbitals. The π molecular orbitals of linear $\mathrm{P}_{2} \mathrm{O}$ reflect the weakness of the $\mathrm{P}-\mathrm{P}$ π bond. The $\mathrm{P}-\mathrm{P} \pi$ bonding molecular orbital is at higher energy than the oxygen 2 p atomic orbital; therefore, the lower, totally in-phase π orbital is polarized toward oxygen, and the higher, $\mathrm{P}-\mathrm{P}$ bonding, $\mathrm{P}-\mathrm{O}$ antibonding π orbital is polarized toward the outer phosphorus.

The weakness of the π bonding in this molecule makes electron correlation essential for a reliable theoretical description of the structure and vibrational frequencies. At the DZP SCF level, the theoretical PO stretching frequency of $\mathrm{P}_{2} \mathrm{O}$ is about 13% higher than the experimental $1270 \mathrm{~cm}^{-1}$, both in our studies and those previously published. ${ }^{6,7}$ Of the previous studies, Jarrett-Sprague and co-workers ${ }^{6}$ reported frequencies at correlated (MP2) levels;

[^0]Table I. Theoretical Vibrational Frequencies (in cm^{-1}) and Total Energies (in Hartrees) for the Linear ${ }^{1} \Sigma^{+}$State and Cyclic ${ }^{1} \mathrm{~A}_{1}$ and ${ }^{3} \mathrm{~B}_{2}$ States of $\mathrm{P}_{2} \mathrm{O}$

${ }^{a}$ Includes Davidson's correction for unlinked quadruple excitations.

Figure 1. Theoretical geometries in angströms and degrees for the liner ${ }^{1} \Sigma^{+}$, cyclic ${ }^{1} \mathrm{~A}_{1}$ and cyclic ${ }^{3} \mathrm{~B}_{2}$ isomers of $\mathrm{P}_{2} \mathrm{O}$.
the DZP MP2 vibrational frequency was $1303 \mathrm{~cm}^{-1}$, which is within 3% of the later experiment. ${ }^{5}$ Our results also support 1270 cm^{-1} as the better value; at the DZP CISD level the ω_{1} stretching frequency is about 7.5% greater, and at the CCSD level only about 3% greater than $1270 \mathrm{~cm}^{-1}$. Although the CAS-SCF method recovers only a fraction of the correlation energy obtained by the CISD or CCSD methods, the theoretical stretching frequency is very close to the experimental value. The very close match is fortuitous, but it shows the importance of valence correlation effects in reducing the SCF overestimation of stretching vibrational frequencies in weak multiple bonds.

Our SCF results for the ${ }^{1} \mathrm{~A}_{1}$ state of cyclic $\mathrm{P}_{2} \mathrm{O}$ are close to those reported previously. ${ }^{6,7}$ Jarrett-Sprague suggested that the IR line observed at $856 \mathrm{~cm}^{-1}$ might be an A_{1} vibrational fre-
quencies at the CISD, CCSD, and CAS-SCF levels. The trend for the ring breathing mode is to decrease both with larger basis sets, and with increasing electron correlation. We would expect the true frequency to be below the theoretical frequency of 819 cm^{-1} (DZP CCSD), and should probably not be assigned to the experimental line at $856 \mathrm{~cm}^{-1}$.
The HOMO of cyclic $\mathrm{P}_{2} \mathrm{O}$ (see Figure 3) is of b_{1} symmetry (a $\mathrm{P}-\mathrm{O}$ antibonding, $\mathrm{P}-\mathrm{P}$ bonding π orbital), and the LUMO is the a_{2} symmetry $\mathrm{P}-\mathrm{P} \pi$ antibonding orbital. Because the HOMO is $\mathrm{P}-\mathrm{O}$ antibonding, it is high lying, and because the $\mathrm{P}-\mathrm{P} \pi$ bond is weak, the LUMO is low lying. This indicates the possibility of a low-energy ${ }^{3} \mathrm{~B}_{2}$ excited electronic state with an orbital occupation ... $\left(3 \mathrm{~b}_{1}\right)\left(2 \mathrm{a}_{2}\right)$. One might also expect this possibility based on the isoelectronic P_{3}^{-}ion, which has a low-lying triplet excited electronic state. ${ }^{15}$ Table III shows that the ${ }^{3} \mathrm{~B}_{2}$ state is of higher energy than the ${ }^{1} \mathrm{~A}_{1}$ state, but only when Davidson's correction ${ }^{16}$ for unlinked quadruple excitations is added to the CISD energy (CISD + Q). The energies of the cyclic states relative to the ${ }^{1} \Sigma^{+}$ state vary markedly with electron correlation and basis set. Our best estimate for the ${ }^{1} \Sigma^{+}-{ }^{1} \mathrm{~A}_{1}$ energy difference is $8.7 \mathrm{kcal} \mathrm{mol}^{-1}$, based on the DZP CCSD energy difference ($5.3 \mathrm{kcal} \mathrm{mol}{ }^{-1}$) plus the effect of basis set at the CISD + Q level [(TZ2P CISD + $\mathrm{Q})-(\mathrm{DZP} \mathrm{CISD}+\mathrm{Q})]=3.4 \mathrm{kcal} \mathrm{mol}^{-1}$. At the highest level actually investigated (TZ2P CISD + Q), the ${ }^{3} \mathrm{~B}_{2}$ state was only $1.4 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than the ${ }^{1} \mathrm{~A}_{1}$ state.

The effect of protonation of $\mathrm{P}_{2} \mathrm{O}$ is a striking reversal of the energy minima on the singlet surface. Both P - and O -protonated isomers of cyclic $\mathrm{P}_{2} \mathrm{O}$ are lower in energy than either P - or O protonated linear $\mathrm{P}_{2} \mathrm{O}$. Viewed another way, the protonation energy of the cyclic isomer is much greater (by more than 20 kcal mol^{-1} at the DZP CISD level) than the protonation energy of the linear isomer. This is the most important finding of the present research.
From the molecular orbital diagram given in Figure 3, we see, as noted before, that the HOMO of the linear $\mathrm{P}_{2} \mathrm{O}$ is polarized toward the terminal phosphorus. Thus, one might expect protonation to occur preferentially at phosphorus and write resonance structure (A) with P-P and P-O double bonds:

$$
\ddot{\ddot{0}}=\stackrel{+}{P}=\stackrel{H}{P}
$$

The electronegativity of oxygen, however, gives $\mathrm{P}_{2} \mathrm{O}$ a substantial

[^1]Table 11. Theoretical Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ and Total Energies (in Hartrees) for the Lowest Singlet State of Various Protonated $\mathrm{P}_{2} \mathrm{O}$ lsomers

assignment	SCF		$\begin{aligned} & \text { CISD } \\ & \text { DZP } \end{aligned}$
	DZP	TZ2P	
	H $\left.\begin{array}{r}H \\ 1 \\ \hline\end{array}\right]^{+} \quad(4)$		
$\omega_{l} \mathrm{a}^{\prime}$ (PH slretch)	$2 \ddot{4} 19$	2389	2381
$\omega_{2} \mathrm{a}^{\prime}$ (PO stretch)	1546	1550	1447
$\omega_{3} \mathrm{a}^{\prime}$ (PP stretch - HPP bend)	747	772	716
$\omega_{4} \mathrm{a}^{\prime}$ (PP stretch + HPP bend)	525	530	520
$\omega_{5} \mathrm{a}^{\prime}$ (PPO bend)	182	207	156
$\omega_{6} \mathrm{a}^{\prime \prime}$ (torsion)	134	189	147
energy	-756.51431	-756.54486	$\begin{aligned} & -756.99163 \\ & -757.05394^{a} \end{aligned}$
$\left[{ }_{H^{\prime}}^{O-P-P}\right]^{+}$(5)			
$\omega_{1} \mathrm{a}^{\prime}$ (OH stretch)	3989	3967	3863
$\omega_{2} \mathrm{a}^{\prime}$ (PO stretch)	1240	1241	1172
$\omega_{3} \mathrm{a}^{\prime}$ (POH bend)	907	930	908
$\omega_{4} \mathrm{a}^{\prime}$ (PP stretch)	737	727	693
$\omega_{5} \mathrm{a}^{\prime \prime}$ (torsion)	113	136	111
$\omega_{6} \mathrm{a}^{\prime}$ (PPO bend)	55	85	72
energy	-756.55056	-756.57342	$\begin{aligned} & -757.02052 \\ & -757.08053^{a} \end{aligned}$

	$\left[\begin{array}{c}H \\ 1 \\ 0-P \\ \hline\end{array}\right]^{+}$(6)		
$\omega_{1} \mathrm{a}^{\prime}$ (PH stretch)	2590	2578	2544
$\omega_{2} \mathrm{a}^{\prime}$ (PO stretch)	1458	1464	1358
$\omega_{3} a^{\prime}$ (OPH bend)	1018	1005	969
$\omega_{4} \mathrm{a}^{\prime \prime}$ (out-of-plane)	570	583	521
$\omega_{s} \mathrm{a}^{\prime}$ (PP stretch)	526	530	532
$\omega_{6} \mathrm{a}^{\prime}$ ((PPH-PPO) bend)	221	209	185
energy	-756.50014	-756.52717	$\begin{aligned} & -756.95999 \\ & -757.01707^{a} \end{aligned}$
	$\left[\begin{array}{c}H \\ 1 \\ O \\ P_{-P}\end{array}\right]^{+} \quad$ (7)		

$\omega_{1} \mathrm{a}^{\prime}$ (OH stretch)	3990	3997	3838
$\omega_{2} \mathrm{a}^{\prime \prime}$ ((POH-POH) bend)	1000	1024	971
$\omega_{3} \mathrm{a}^{\prime}$ (H out-of-plane)	987	1032	998
$\omega_{4} \mathrm{a}^{\prime}((\mathrm{PP}+\mathrm{PO}+\mathrm{PO})$ stretch $)$	822	819	778
$\omega_{s} \mathrm{a}^{\prime}$ ((2PP-PO-PO) stretch)	693	690	652
$\omega_{6} \mathrm{a}^{\prime \prime}((\mathrm{PO}-\mathrm{PO})$ stretch $)$	311	306	360
energy	-756.56653	-756.58712	-757.03855
	$\left.p_{p-p}^{\prime}\right]^{+}$		
ω_{1} (PH stretch)	2541	2527	2508
ω_{2} (PO stretch)	1152	1139	1105
ω_{3} ((OPH+PPH) bend)	1022	1005	976
ω_{4} ($(\mathrm{OPH}-\mathrm{PPH})$ bend)	755	749	719
ω_{5} (PO stretch)	573	552	544
ω_{6} (PP stretch)	512	512	490
energy	-756.57010	-756.59197	$\begin{aligned} & -757.03907 \\ & -757.09792^{a} \end{aligned}$
	$O-P]^{+}(9)$		
$\omega_{1} \mathrm{a}^{\prime}$ (PH stretch)	2541	2528	2530
$\omega_{2} \mathrm{a}^{\prime}$ (OPH bend)	1151	1148	1111
$\omega_{3} \mathrm{a}^{\prime}$ (PO stretch)	970	951	902
$\omega_{4} \mathrm{a}^{\prime}$ (PO stretch)	549	539	571
$\omega_{s} a^{\prime \prime}$ (POPH torsion)	286	268	323
$\omega_{6} \mathrm{a}^{\prime}$ (POP bend)	180	137	220
energy	-756.52827	-756.53839	$\begin{aligned} & -756.99555 \\ & -757.05895^{a} \end{aligned}$

${ }^{a}$ Included Davidson's correction for unlinked quadruple excitations.
dipole moment (2.33 D at the DZP CISD level). Presumably the greater electron density at oxygen makes PPOH^{+}the lower energy isomer. Much of the electron density at oxygen, however, is due to the 2π bonding orbital. Protonation at oxygen weakens the

Table III. Relative Energies of Linear ${ }^{1} \Sigma^{+}$and Cyclic ${ }^{1} \mathrm{~A}_{1}$ and ${ }^{3} \mathrm{~B}_{2}$ States of $\mathrm{P}_{2} \mathrm{O}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

	$\begin{gathered} 1,{ }^{1} \Sigma^{+} \\ \mathrm{P}=\mathrm{P}=\mathrm{O} \end{gathered}$	$\begin{gathered} \text { 2, }{ }^{1} \mathrm{~A}_{1} \\ \circ \\ \mathrm{P}^{\prime}=\mathrm{P} \end{gathered}$	$\begin{gathered} 3,{ }^{3} B_{2} \\ { }^{\prime} \\ p_{p} \end{gathered}$
SCF			
DZP	0.0	8.4	-6.0
TZ2P	0.0	12.5	0.1
CISD			
DZP	0.0	7.2 (6.5) ${ }^{\text {a }}$	4.0 (7.6) ${ }^{\text {a }}$
TZ2P	0.0	10.8 (9.9) ${ }^{\text {a }}$	8.3 (11.3) ${ }^{\text {a }}$
CCSD			
DZP	0.0	5.3	
CAS-SCF			
DZP	0.0	13.2	

${ }^{a}$ Includes Davidson's correction for unlinked quadruple excitations.
Table IV. Relative Energies of Various Singlet-State and
Triplet-State Isomers of Protonated $\mathrm{P}_{2} \mathrm{O}$ (in kcal mol${ }^{-1}$)

	SCF		C1SD
	structure	DZP	DZP

(a) Singlet-State Isomers

8	$\left[H^{+8-P}{ }^{\circ}{ }^{+}\right.$	0.0	0.0	$0.0(0.0)^{a}$
7	$\left[\begin{array}{c}H \\ 1 \\ O \\ \hline \\ \hline\end{array}\right]^{+}$	2.2	3.0	$0.3(-0.7)^{a}$
5	$\left[H^{\prime}-P-P\right]^{+}$	12.3	11.6	$11.6(10.9)^{\text {a }}$
9	$\left[\mathrm{H}^{\prime}-\mathrm{O}-\mathrm{P}\right]^{+}$	26.3	33.6	$27.3(24.5)^{a}$
4	$\left[\begin{array}{r} H \\ O-P-P \end{array}\right]^{+}$	35.0	29.6	$29.8(27.6)^{a}$
6	$\left[\begin{array}{c}H \\ 1 \\ 0-P\end{array} \square^{+}\right]^{+}$	43.9	40.7	49.6 (50.7) ${ }^{\text {a }}$

(b) Triplet-State Isomers

$8\left[\mathrm{H}^{P^{\prime}-P}\right]^{+} \quad$ collapess $10\left[\begin{array}{c}P-O_{1}^{\prime} \\ H^{\prime} \\ P\end{array}\right]^{+}$
$7\left[\begin{array}{c}H \\ I \\ O \\ P_{-P}\end{array}\right]^{+}$
$\begin{array}{ll}6.2 & 10.7\end{array}$
17.9 (21.6)

4
\(\left[\begin{array}{lllll}\mathrm{P}^{\prime}-\mathrm{P} \&

\mathrm{O}^{+} \& \mathrm{H}\end{array}\right]^{+} \quad\)| 7.8 | 9.1 | $18.4(20.6)$ (cis) | |
| :--- | :--- | :--- | :--- |
| | 8.2 | 9.4 | $18.8(21.1)$ (trans) |

$6\left[\begin{array}{c}H \\ 1 \\ 0-P\end{array}\right]^{+}$
$14.1 \quad 12.5$
25.3 (28.3)
${ }^{a}$ Includes Davidson's correction for unlinked quadruple excitations.
$\mathrm{P}-\mathrm{O}$ bond; in effect protonation shifts multiple bond character from the $\mathrm{P}-\mathrm{O}$ bond to the $\mathrm{P}-\mathrm{P}$ bond, as reflected in the resonance structure (B):

and in the $0.010-0.015-\AA$ decrease in the theoretical P-P distance. The weakness of the $\mathrm{P}-\mathrm{P}$ (formally) triple bond is indicated by
Q
8

Triplet
b

7

Figure 2. Theoretical geometries for the lowest singlet state (a) and lowest triplet state (b) of various protonated $\mathrm{P}_{2} \mathrm{O}$ isomers. All bond distances are in \AA.
the low PPO bending frequency of $\mathrm{PPOH}^{+}\left(72 \mathrm{~cm}^{-1}\right.$ at the DZP CISD level).

The energies of P - and O -protonated cyclic $\mathrm{P}_{2} \mathrm{O}$ structures differ by only $3.0 \mathrm{kcal} \mathrm{mol}^{-1}$ at the DZP SCF level, and by less than $1 \mathrm{kcal} \mathrm{mol}^{-1}$ at the DZP CISD level. Electron correlation lowers -

$$
P \equiv P
$$

$$
\mathrm{O}=\mathrm{P}=\mathrm{P}
$$

Figure 3. Qualitative molecular orbital diagram (based on DZP SCF orbitals) for linear and cyclic $\mathrm{P}_{2} \mathrm{O}$.

Table V. Total Energies (hartrees) and Theoretical Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right.$) for Bent and Cyclic $\mathrm{P}_{2} \mathrm{~F}^{+}$

assignment	SCF		CISD	
	DZP	TZ2P	DZP	TZ2P
		$\stackrel{F}{\text { f }}$		
$\omega_{1}(\mathrm{PF}+\mathrm{PF}+\mathrm{PF})$	802	801	762	
ω_{2} ($2 \mathrm{PP}-\mathrm{PF}-\mathrm{PF}$)	662	657	633	
ω_{3} (PF-PF)	33 i	81 i	230	
energy	-780.53056	-780.55156	-780.99465	-781.16763
			-781.05197^{a}	-781.23907°
		$\begin{array}{r} F \\ P \\ P-P \end{array}$		
ω_{1} (PF stretch)	964	954	895	
ω_{2} (PP stretch)	621	614	599	
ω_{3} (bend)	192	184	172	
energy	-780.53978	-780.56156	-780.98884	-781.16452
			-781.04186^{a}	-781.23202 ${ }^{\text {a }}$

${ }^{a}$ Includes Davidson's correction for unlinked quadruple excitations.
the relative energy of the O-protonated isomer, but improved basis set (at the SCF level) favors the P-protonated isomer. Under any extrapolation, therefore, the two isomers should remain nearly isoenergetic.

Triplet States

Following a referee's suggestion, a search for low-lying triplet electronic states was also carried out. These results are summarized in Figure 2 b and Table IVb. Some of these structures are quite low lying energetically. In particular, the triplet trans HOPP^{+}structure 5 is predicted to lie only $7.7 \mathrm{kcal} / \mathrm{mol}$ above the global minimum, cyclic singlet state 8 . In Figure 2b, only the lower energy structure (either cis or trans) is diplayed when a second geometrical isomer exists.

Related Systems

Protonation of the cyclic isomer stabilizes the $3 \mathrm{~b}_{1} \mathrm{P}-\mathrm{O}$ antibonding orbital, in contrast to linear $\mathrm{P}_{2} \mathrm{O}$, in which the proton interacts with nonbonding or even bonding orbitals. If one completely removed the $3 b_{1}$ electrons, then cyclic $\mathrm{P}_{2} \mathrm{O}$ would have two

Top: CISD.TZ2P/CISD.DZP
Bottom: SCF.TZ2P/SCF.DZP
Figure 4. Theoretical geometris in ångströms and degrees for the bent and cyclic isomers of $\mathrm{P}_{2} \mathrm{~F}^{+}$.
ring electrons, fulfilling the $4 n+2$ rule. Thus one would also predict $\mathrm{P}_{2} \mathrm{O}^{2+}$ and $\mathrm{P}_{2} \mathrm{~N}^{+}$to be cyclic. Protonation at phosphorus weakens the $\mathrm{P}-\mathrm{P}$ bond and the $\mathrm{P}_{\mathrm{H}}-\mathrm{O}$ bond substantially and shortens the $\mathrm{P}-\mathrm{O}$ bond. One gives up $\mathrm{P}-\mathrm{P}$ multiple bonding to gain $\mathrm{P}-\mathrm{O}$ multiple bonding. Protonation at oxygen also strengthens the $\mathrm{P}-\mathrm{O}$ bonds and weakens the $\mathrm{P}-\mathrm{P}$ bond.
Another way to weaken the antibonding $3 \mathrm{~b}_{1}$ interaction is to replace oxygen by fluorine. The energy of the fluorine atomic p orbital would be even further below the P-P π bonding orbital than the oxygen p orbital. If weakening the ring π interaction favors the cyclic structure, one might expect $\mathrm{P}_{2} \mathrm{~F}^{+}$to be cyclic. This hypothesis was tested theoretically by optimizing the structures of the isoelectronic $\mathrm{P}_{2} \mathrm{~F}^{+}$. We found two stationary points, which are shown in Figure 4: a bent structure and a cyclic structure. The total energies and theoretical vibrational frequencies are given in Table V, and the relative energies are given in Table VI. At the SCF level, the bent structure is a minimum, and the cyclic structure is a transition state between the two equivalent bent structures. When correlation is included, however,

Table VI. Relative Energies of Bent and Cyclic $\mathrm{P}_{2} \mathrm{~F}^{+}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

	SCF		CISD	
	DZP	TZ2P	DZP	TZ2P
F	0.0	0.0	0.0	0.0
$P-P$				
F	5.8	6.3	-3.4	-2.0
$P-P$		-6.3^{a}	-4.4^{a}	

${ }^{a}$ Includes Davidson's correction for unlinked quadruple excitations.
the cyclic structure is not only a minimum, it is the global minimum, $4.4 \mathrm{kcal} \mathrm{mol}^{-1}$ below the bent structure at the TZ2P CISD +Q level.
The linear structure was also a transition state at the DZP SCF level and was not investigated further. The highly electronegative fluorine will not form the linear structure (C), presumably because it would force a P-P triple bond:

C
Viewed in terms of resonance structures, both cyclic and bent $\mathrm{P}_{2} \mathrm{~F}^{+}$ contain ionic terms:

$\because \ddot{F}:-$	
$: P=P:$	$: \ddot{F}:-$
$2+$	$2+$

This is shown by the Mulliken populations which have a negative charge on the fluorine (-0.44 and -0.40 for cyclic and bent, respectively, at the TZ2P CISD level of theory).

If the key to stabilizing the cyclic structure is the weakening of the b_{1} antibonding orbital interaction, one might expect that the groups NH and CH_{2}, which are isoelectronic to OH^{+}, might also prefer cyclic structures to linear ones when attached to P_{2}. In these cases the b_{1} interaction would be weakened because the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ bonds would polarize the N or C_{x} orbital away from the phosphorus π orbitals. Although ring-opening polymerizations would certainly be energetically favored, if one could isolate these molecules ($\mathrm{P}_{2} \mathrm{~F}^{+}, \mathrm{P}_{2} \mathrm{CH}_{2}$, or $\left.\mathrm{P}_{2} \mathrm{NH}\right)$ either in the gas phase, or in an inert matrix, they hold promise of being stable three-membered rings incorporating a $\mathrm{P}-\mathrm{P}$ double bond.

Acknowledgment. This research was supported by the U.S. Air Force Office of Scientific Research, Grant AFOSR-87-0182.

Twisted Double Bond in Methylenephosphonium Ions. A Theoretical Investigation

Michael Ehrig, Hans Horn, Christoph Kölmel, and Reinhart Ahlrichs*
Contribution from the Lehrstuhl für Theoretische Chemie, Institut für Physikalische Chemie und Elektrochemie, Universität Karlsruhe, D-7500 Karlsruhe, Federal Republic of Germany. Received August 8, 1990

Abstract

Results of rigorous $S C F$ calculations, including structure optimizations, are reported for $\left(\mathrm{R}_{2} \mathrm{~N}_{2} \mathrm{P}^{+}=\mathrm{C}^{+}\left(\mathrm{SiR}^{\prime}{ }_{3}\right)_{2}\right.$: $\mathrm{R}=\mathrm{H}, \mathrm{Me}, i-\mathrm{Pr} ; \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}$ (and for $\mathrm{R}_{2} \mathrm{P}^{+}=\mathrm{CR}^{\prime}{ }_{2}$ for comparison). Twisting of the $\mathrm{P}^{+}=\mathrm{C}$ double bond caused by steric hindrance of bulky groups R and R^{\prime} is facilitated by the electronic structure of the parent compound $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{P}^{+}=\mathrm{C}\left(\mathrm{SiH}_{3}\right)_{2}$ which differs markedly from the genuine double-bond structure found in $\mathrm{H}_{2} \mathrm{P}^{+}=\mathrm{CH}_{2}$.

I. Introduction

Igau, Baceiredo, Grützmacher, Pritzkow, and Bertrand ${ }^{1}$ have recently reported the synthesis and crystal structure of the me-
(1) Igau, A.; Baceiredo, A.; Grützmacher, H.; Pritzkow, H.; Bertrand, G. J. Am. Chem. Soc. 1989, 111, 6853.
thylenephosphonium ion 1 , with $\mathrm{R}=i-\operatorname{Pr}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)$ and $\mathrm{R}^{\prime}=\mathrm{Me}$ with $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$as counterion. 1 could be simply considered as a phosphanylcarbene 2, and the basic question addressed in the present work concerns the specific importance of a mino and silyl groups for the properties of 1.
The crystal structure of 1, visualized in Figure 1a, shows re-

[^0]: (12) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823.
 (13) PSI, distributed by PSITECH, Inc., Watkinsville, GA
 (14) Knowles, P. J.; Werner, H. J. Chem. Phys. Lett. 1985, 115, 259

[^1]: (15) Hamilton, T. P.; Schaefer, H. F. Chem. Phys. Lett. 1990, 166, 303.
 (16) Davidson, E. R. In The World of Quantum Chemistry; Daudel, R., Pullman, B., Eds.; Reidel: Dordrecht, 1974; pp 17-30.

